Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Clare Lee and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.023 wR factor = 0.051 Data-to-parameter ratio = 31.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Propane-1,2-diammonium hydrogenarsenate

monohydrate

The title compound, $[H_3NCH_2CH(NH_3)CH_3][HAsO_4]\cdot H_2O$, contains a network of doubly protonated propane-1,2diammonium cations, hydrogenarsenate anions $[d_{av}(As-O) = 1.682 (1) \text{ Å}]$ and water molecules. Crystal symmetry generates a racemic mixture of the two enantiomers of the organic species. The crystal packing is controlled by N– $H \cdots O [d_{av}(H \cdots O) = 1.89 \text{ Å}, \theta_{av}(N-H \cdots O) = 167^{\circ} \text{ and} d_{av}(N \cdots O) = 2.760 (1) \text{ Å}]$ and $O-H \cdots O [d_{av}(H \cdots O) = 1.86 \text{ Å}, \theta_{av}(O-H \cdots O) = 175^{\circ} \text{ and } d_{av}(O \cdots O) = 2.712 (1) \text{ Å}]$ hydrogen bonds. It is isostructural with its hydrogenphosphate congener.

Comment

The title compound, (I) (Fig. 1), complements recently reported (protonated) amine phosphates, such as triethanolammonium dihydrogenphosphate, NH(CH₂CH₂OH)₃·H₂PO₄ (Demir *et al.*, 2003). It is isostructural with its hydrogenphosphate congener, $[H_3NCH_2CH(NH_3)CH_3](HPO_4)\cdot H_2O$ (Baouab & Jouini, 1998). One interesting use of $[H_3NCH_2CH(NH_3)CH_3]^{2+}$ is as a template in the synthesis of new open-framework materials (Natarajan, 1999).

The structure of (I) contains propane-1,2-diammonium cations, hydrogenarsenate $(HAsO_4)^{2-}$ anions and water molecules. Each $[H_3NCH_2CH(NH_3)CH_3]^{2+}$ molecule is chiral (in the asymmetric unit shown in Fig. 1, atom C2 has an *R* configuration), with crystal symmetry generating a 50:50 mixture of the two enantiomers, which is consistent with the racemic starting material. Its geometrical parameters $[d_{av}(C-N) = 1.495 (2) \text{ Å}$ and $d_{av}(C-C) = 1.516 (2) \text{ Å}]$ are similar to those of the same cation in $[H_3NCH_2CH(NH_3)CH_3](BF_4)$ (Gerrard & Weller, 2002). The $(HAsO_4)^{2-}$ hydrogenarsenate group shows its standard tetrahedral geometry $[d_{av}(As-O) = 1.682 (1) \text{ Å}$ and $\theta_{av}(O-As-O) = 109.4 (1)^{\circ}]$, with the protonated As-O4 vertex showing its expected lengthening relative to the other As-O bonds.

As well as electrostatic attractions, the component species in (I) interact by means of a network of $N-H\cdots O$ and $O-H\cdots O$ links (Table 2). The $(HAsO_4)^{2-}$ units and the water molecule (atom O5) are linked into a polymeric chain in the Received 1 August 2003 Accepted 4 August 2003 Online 15 August 2003

Printed in Great Britain - all rights reserved

© 2003 International Union of Crystallography

Figure 1

The asymmetric unit of (I) (50% displacement ellipsoids). H atoms are drawn as small spheres of arbitrary radius and hydrogen bonds are indicated by dashed lines.

Figure 2

Detail of a hydrogen-bonded hydrogenarsenate/water chain in (I) Colour key: $[HAsO_4]^{2-}$ tetrahedra green, O atoms rose and H atoms grey. The H···O portions of the hydrogen bonds are highlighted in yellow. Symmetry codes as in Table 2; additionally (vi) x, 1 - y, z; (vii) $-\frac{1}{2} - x$, $y - \frac{1}{2}, \frac{1}{2} - z$.

[010] direction by hydrogen bonds mediated by the water molecules (Fig. 2); each hydrogenarsenate tetrahedron is associated with three water neighbouring water molecules. There are no direct inter-tetrahedral As $-OH \cdots O-As$ bonds, contrary to the commonly seen P $-OH \cdots O-P$ bonds in amine phosphates (Demir *et al.*, 2003).

The organic species crosslink the chains in the [100] and [010] directions by way of N-H···O-As hydrogen bonds (Table 2). All six of the $-NH_3^+$ H atoms are involved in these links $[d_{av}(H \cdots O) = 1.89 \text{ Å}, \theta_{av}(N-H \cdots O) = 167^{\circ}$ and $d_{av}(N \cdots O) = 2.760 (1) \text{ Å}]$. This results in (001) pseudo-layers of alternating hydrogenarsenate/water and organic moieties (Fig. 3).

A short C1-H8···O4ⁱⁱ (symmetry code as in Table 2) intermolecular contact $[d(C-H) = 0.97 \text{ Å}, d(H \cdot \cdot O) = 2.51 \text{ Å}, \theta(C-H \cdot \cdot O) = 138^{\circ}$ and $d(C \cdot \cdot O) = 3.2929 (19) \text{ Å}]$ was

[010] projection of (I). Colour key as in Fig. 2; additionally C atoms blue, N atoms green. The $H \cdots O$ portions of the hydrogen bonds are highlighted in yellow.

identified in a *PLATON* (Spek, 2003) analysis of the structure. If it is not merely a packing artefact, it may provide some additional coherence between the (001) pseudo-layers.

Experimental

Racemic propane-1,2-diamine (1 ml) was added to 8 ml of 0.5 M H₃AsO₄, giving a clear solution. Chunky, faceted crystals of (I) grew as the water evaporated over the course of a few days.

Crystal data

$(C_3H_{12}N_2)[HAsO_4]\cdot H_2O$	$D_x = 1.734 \text{ Mg m}^{-3}$
$M_r = 234.09$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 3887
a = 10.9115(5)Å	reflections
b = 6.1530 (3) Å	$\theta = 2.4 - 32.2^{\circ}$
c = 13.3653 (6) Å	$\mu = 3.78 \text{ mm}^{-1}$
$\beta = 92.315(1)^{\circ}$	T = 293 (2) K
V = 896.59 (7) Å ³	Chunk, colourless
Z = 4	$0.23 \times 0.21 \times 0.19 \text{ mm}$
Data collection	
Bruker SMART1000 CCD	3224 independent reflections
diffractometer	2519 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.022$
Absorption correction: multi-scan	$\theta_{\rm max} = 32.5^{\circ}$
(SADABS; Bruker, 1999)	$h = -16 \rightarrow 15$
$T_{\min} = 0.431, T_{\max} = 0.488$	$k = -9 \rightarrow 5$
8758 measured reflections	$l = -19 \rightarrow 20$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.051$ S = 0.923224 reflections 103 parameters $\theta_{\text{max}} = 32.5^{\circ}$ $h = -16 \rightarrow 15$ $k = -9 \rightarrow 5$ $l = -19 \rightarrow 20$ H-atom parameters constrained $1(l - 2^{2}L^{2}) = (0.0251 \text{ m})^{2}l$

 $\begin{aligned} & w = 1/[\sigma^2(F_o^2) + (0.0251P)^2] \\ & \text{where } P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} = 0.42 \text{ e} \text{ Å}^{-3} \\ \Delta\rho_{\text{max}} = 0.42 \text{ e} \text{ Å}^{-3} \end{aligned}$

 Table 1

 Selected geometric parameters (Å, °).

As1-O1	1.6583 (10)	N1-C1	1.490 (2)
As1-O2	1.6671 (11)	N2-C2	1.500 (2)
As1-O3	1.6730 (11)	C1-C2	1.517 (2)
As1-O4	1.7302 (11)	C2-C3	1.514 (2)
N1-C1-C2-C3	-54.09(18)	N1-C1-C2-N2	70.26 (16)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
04-H1···O5	0.85	1.81	2.6534 (17)	177
$N1 - H2 \cdot \cdot \cdot O1^i$	0.89	1.80	2.6904 (17)	174
$N1-H3\cdots O1^{ii}$	0.89	1.86	2.7412 (17)	169
$N1 - H4 \cdot \cdot \cdot O3$	0.89	1.96	2.8436 (18)	176
N2-H5···O3 ⁱⁱⁱ	0.89	1.90	2.7449 (17)	158
$N2-H6\cdots O3$	0.89	1.90	2.7596 (17)	163
$N2-H7\cdots O2^{iv}$	0.89	1.92	2.7782 (17)	161
$O5-H14\cdots O2^{v}$	0.90	1.82	2.7056 (17)	172
$O5{-}H15{\cdots}O2^i$	0.82	1.96	2.7782 (17)	176

Symmetry codes: (i) x, 1 + y, z; (ii) $\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$; (iii) -x, 1 - y, -z; (iv) -x, -y, -z; (v) $-\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$.

O-H H atoms were found in difference maps and were refined as riding, starting in their as-found positions. H atoms bonded to carbon and nitrogen were placed in calculated positions [d(C-H) = 0.96-0.98 Å and d(N-H) = 0.89 Å] and refined as riding [free rotation of the rigid $R-NH_3$ and $R-CH_3$ groups about the R-N and R-C bonds, respectively, was allowed.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97; molecular graphics: *ORTEP*-3 (Farrugia, 1997) and *ATOMS* (Shape Software, 1999); software used to prepare material for publication: *SHELXL*97.

References

Baouab, L. & Jouini, A. (1998). J. Solid State Chem. 141, 343-351.

- Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Demir, S., Yilmaz, V. T. & Harrison, W. T. A. (2003). Acta Cryst. E59, 0907– 0909.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gerrard, L. A. & Weller, M. T. (2002). Acta Cryst. C58, m504-m505.
- Natarajan, S. (1999). J. Solid State Chem. 148, 50-55.
- Shape Software (1999). ATOMS. Shape Software, Kingsport, Tennessee, USA.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
- Spek, A. L. (2005). J. Appl. Cryst. 30, 7–15.